
Research Directions in Sensor Data Streams: Solutions and Challenges

Eiman Elnahrawy
Department of Computer Science

Rutgers University
eiman@paul.rutgers.edu

Abstract

A typical framework of sensor streams is data obtained from wireless networks of sensors, embedded in a
physical space, continuously communicating a stream of data to a database. These wireless networks typically
consist of large number of low-power and limited-bandwidth devices. They are primarily used for monitoring
of several physical phenomenon such as, contamination, climate, building structure, etc., potentially in remote
harsh environments. Research in sensor streaming has been generally focused on ultimate utilization of such
devices given their limited resources and unattended deployment. This paper surveys current research direc-
tions in sensor data streams. In particular, it emphasizes existing work on storage and gathering of sensor
data, architectures for querying sensor streams, and handling of erroneous sensors. It also highlights some
open problems and discusses research paths to pursue in this exciting research area.

1 Introduction

Wireless sensor networks typically consist of few thousands of sensors, embedded in physical spaces, con-
tinuously collecting and communicating their data stream to the database. The database usually resides at a
“powerful” device called a base-station. Such sensors are low-power, low-bit rate devices, and usually sampled
at low rate, i.e., few times per second or less, depending on various factors such as the application, type of
sensors, etc. They are currently used in several real life applications. Specifically, for monitoring several phys-
ical phenomena such as climate, e.g., light, temperature, wind, etc., concentration of contaminants, building
structure and response to earthquakes, etc., especially in remote hard to administer environments. Due to their
low cost (can be as cheap as 10 cents), these devices are expected to become pervasive, and consequently, to be
a major source of information for databases. In particular,in the near future, every object will afford to have a
sensor on it. These sensors will operate as black-boxes that record diagnostic data, performance data, history
of the object, etc., e.g., in vehicles, cell phones, bridges andintersections, computers, inventory, and so on.
Therefore, the future of sensor streams lies in reasoning about such data and solving any existing problems that
prevent their wide deployment.

The major focus of the current research on sensor streams, among the database community, is data gathering
techniques using network primitives, e.g., [12, 7, 20, 19]. This research takes into consideration the severe
resource constraints of sensor networks, especially energy constraint, and their unattended deployment poten-
tially in harsh environments. Our ongoing work, on the otherhand, is primarily focused on online data cleaning
techniques such as cleaning and querying of noisy data, discovering outliers, and handling incomplete data due
to missing values, e.g., [5]. Our motivation is that such problems generally limit the deployment of sensors in
the real world as “reliable” sources of information, specifically for decision making. This paper surveys current
research directions in sensor data streams. It discusses current work on storage of sensor data streams, aggre-
gation of sensor streams using in-network distributed techniques, frameworks for querying sensor streams, and

1



finally, our recent work on handling of erroneous sensors. Italso emphasizes some challenges and open prob-
lems in this area that need further investigation and highlights exciting research paths to pursue while dealing
with sensor data.

The rest of this paper is organized as follows. In Section 2, we give an overview of wireless sensor networks,
their limitations and capabilities, and compare sensor data streams to traditional streams. We present existing
techniques for storage of sensor data in Section 3. Section 4surveys existing research on in-network aggregation
of sensor streams. We present Fjord, an architecture for queries over streaming sensor data in Section 5. We
then discuss our ongoing work on handling imprecision in sensor networks in Section 6. Finally, we conclude
this paper and discuss our view of the future of sensor streams in Section 7.

2 Background

In this section, we discuss limitations of wireless sensor networks. We also highlights some of the ma-
jor problems of sensor data obtained from such networks. We then emphasize the characteristics of sensors
considered in this survey, and distinguish between sensor streaming and traditional data streaming.

2.1 Limitations and Problems

Unfortunately, sensors of wireless sensornets have serious resource constraints [7, 12, 22]. In particular,
they have limited battery life, which, if abused, may cause the sensors to live for only few days as opposed to
few months. In addition, they have constrained communication bandwidth (1-100 Kbps), and limited storage
and processing capabilities. For example, a typical sensorhas 4MHz processor, 8KB programming memory,
512B data memory, 10 Kbps Bandwidth only [8]! These energy, bandwidth, storage, and processing limitations
enforce special data handling algorithms and architectures for sensor data streams, that explicitly incorporate
these resource constraints. Pottiet al have shown that communication cost in sensor networks is orders of
magnitude higher than their processing cost [17], and therefore, current approaches for handling of sensor data
usually strive to minimize energy, spent by the sensors, by preprocessing this data. This preprocessing aims
at minimizing the size of the data before communicating it tothe base-station (database), and consequently,
reduce communication energy. We will later discuss several such approaches throughout this paper.

Another serious problem of sensor data streams is incomplete data. In particular, existence of missing values
among data obtained from wireless sensor networks. There aremany factors that contribute to this problem
such as packet loss and topology changes. The former arise inwireless sensornets due to poor links and com-
munication failures, fading of signal strength, packet collision between multiple transmitters, and constant or
sporadic interferences [22]. Zhaoet al. have shown the severeness of this problem experimentally. Specifically,
they found that more than

�����
of the network links suffer average loss rate��� ��� , and that packet loss of

most links fluctuates over the time with estimated variance� �
	��
��� [22]. Nevertheless, the topology of a
sensornet is usually continuously changing due to node failures and node movements, e.g., based on our exper-
imental deployments, on the average,� 	������ of the nodes may be assumed failed at each sampling attempt.
Most of the existing research on missing values is either focused on providing low-level networking solution
such as [22], or customized solutions that work for specific applications such as [13, 12], which is considered a
limited solution. In both cases, the problem persists, although less severely. Our ongoing research, on the other
hand, is focused on a general purpose solution for this problem.

Finally, another prevalent problem in sensor data is imprecision, either due to lag of database update or due to
noisy readings. In the former case, the massiveness of readings and the limited energy and wireless bandwidth
may not allow for continuous and instantaneous updates, andtherefore, the database state may lag the state of
the real world. This problem has been addressed recently in [4]. The later case, however, is due to inaccuracies
of measurements which is the primary source of data. The sources of inaccuracies include, but are not limited
to: (a) noise from external sources, (b) inaccuracies in themeasurement technique, (c) calibration errors, and (d)
imprecision in computing a derived value from the underlying measurements. The cost of imprecise data can be
very significant if they result in an immediate decision making or actuator activation. Imprecision due to noisy

2



readings is considered an important cause of uncertainty insensor databases, and hence, we are addressing this
problem in our ongoing research [5].

2.2 Capabilities

It is worth distinguishing between sensors used in wireless networks, also called “smart dust”, which are
low-power and have limited resources, and larger more powerfulsensors, e.g., sensors considered in [15], or
passive sensors, e.g., [1]. The former type of sensors, i.e, smart dust, represent the current generation of sensors,
and they are the main focus of this survey. Powerful sensors, on the other hand, are usually far more expensive
than smart dust, and therefore, they are of limited usage. Our goal, however, is to have very cheap sensors,
scattered everywhere, collecting data about various real life phenomena continuously. Some of the algorithms
and techniques, that will de discussed in this paper, are useful for such powerful sensors as well. Specifically,
discussion of Fjords in Section 2, and noisy sensors in Section 6. To the best of our knowledge, there is no
existing research on modeling of passive sensors or designing of frameworks for querying such sensors. We
think that this is an interesting research path to pursue.

Capabilities of sensors in wireless networks varies slightly based on the type of sensors, the nature of queries,
and consequently, the applications. In general, these sensors can perform simple tasks such as forwarding their
raw readings to a base-station or nearby sensors, performing simple aggregations of their own readings, or
performing simple partial processing. Their power and processing resources enable limited storage of some of
their own readings or readings of neighboring sensors locally. I.e., such sensors are capable of constructing and
maintaining a locally consistent view of its neighborhood [11].

2.3 Sensor Streaming versus Traditional Streaming

We have discussed several limitations of wireless sensor networks and problems of sensor data, obtained
from such networks. In this section, we argue that existing traditional streaming techniques are not directly
applicable to sensor streaming, and we highlight some of the major differences between the two areas. The first
distinction is that data of sensor streams are only samples of the entire population. The sampling rate varies
from application to another, e.g., temperature and light dataare usually sampled several times per second, while
contamination is sampled at much lower frequency [14]. On theother hand, the entire population is usually
available in traditional streaming, e.g., data of web logs, network streams, stock market, etc. Second, sensor
data is usually imprecise and noisy, while traditional streaming data is exact and error-free [5]. Third, existing
sensor streams is typically of moderate size as compared to overwhelming storage and processing of huge data
in traditional streams. This distinction, however, is tied to the current applications of sensor streams which
involve data of moderate size, i.e., few thousands of tuples ata specific time instance. Our conjecture is that
sensors will become very pervasive in the future, and consequently, sensor streams will be very huge. We will
discuss a scalable architecture for sensor streams in Section 5, and we will further discuss our predictions of
the future of sensor streams in Section 7. Fourth, due to the fact that sensors die when they run out of power,
data acquisition in sensor networks is expensive, while dataof traditional streaming is considered free with no
acquisition cost. Finally, sensor data has continuous domains (i.e., continuous attributes). As such, some of
questions posed in traditional streaming such as frequent items, distinct values, etc., are clearly not meaningful
for such domains. Current applications of wireless sensor networks, on the other hand, usually involve “simple”
aggregates. We believe that this will continue to be the case even when sensors become pervasive.

3 In-network Storage

In this section we discuss recent research on storage of sensor data in the network. Generally, we are inter-
ested in systems that extract data from sensor fields and enable users to observe, analyze, and query this data.
These systems should be (1) energy-efficient, (2) scalable in the size of the network, and (3) self-organizing and
robust against node failures and topology changes at the same time. In order to minimize energy consumption,

3



communication cost needs to be optimized, when storing sensor readings and when querying. Specifically, sys-
tems should benefit from general characteristics of sensor data, such as their spatio-temporal nature, to reduce
the size of data communicated to the database1. Scalability can be achieved by adopting hybrid systems that
combines distributed and hierarchical structures. Finally, robustness is generally achieved by data redundancy
and low-level networking.

Ganesanet al. argue that existing systems do not satisfy these design goals especially energy-efficiency
and scalability, and therefore, they introduce an alternative architecture for handling of sensor data [7]. For
example, they argue that the objective of hierarchical web caches is to lower load and latency in network traffic
by strategically placing frequently accessed web pages. However, hierarchical web caches are not designed
for resource constrained systems as in wireless sensor networks. They also do not utilize space and time
correlations between their data (i.e., web pages) which is commonamong sensor readings. Another argument is
that Geographic Information Systems (GIS), which handles spatio-temporal data, have “centralized” processing
and their design goal is to reduce data search cost, irrespective of the energy cost. They also argue that although
the spatio-temporal characteristic of data in media streaming systems, on the internet, is similar to sensor data,
they are based on space first time next compression. The objective of the space-wise compression is to compress
each data frame while the objective of the time-wise compression is to compress the value of each point in the
data over successive frames. A time first space next compression, on the other hand, is more resource-efficient
in sensor networks since time compression is performed locally at the sensor node, while space compression
requires communication between different nodes, and consequently, energy. Finally, they argue that cost metric
in lossy compression using wavelets should be a local metricthat tradeoff compression versus communication
and not compression versus reconstruction error.

Given our desired design goals, there are generally three approaches for storing data in sensor networks:
external, local, and data centric storage approaches [19, 18]. In external storage, sensor data is continuously
sent to a “powerful” collecting point(s). Hence, there is a cost for communication of data to the base-station,
however, there is no cost of querying this data (with respect tosensor energy consumption)2. On the other hand,
data in local storage are stored locally at its original node. Consequently, there is no cost of data communication,
however, there is a significant cost of querying this data since queries will be sent to every node in the network
(e.g., by flooding). Finally, in data centric storage (DCS), data are stored by name, and therefore, there is a
cost of communicating the data from its original node to the node where it will be stored. However, cost of
querying in this case is reduced since queries are directed to the node that stores the data and not to every node
in the network. As a conclusion, there is a significant tradeoff between energy consumption and data storage
technique. To decide which storage technique to use in a specific deployment of sensors we need to have a prior
knowledge of the network characteristics and the deployment. For example, the topology of the network and
its use, the number of nodes, the sensed phenomena, and the application (and therefore, the nature of queries),
are all important factors that will affect our decision.

In this section, we discuss research on the three major storage approaches, an external storage approach [9],
a local storage approach [7], and a data centric storage approach (DCS) [19, 18]. The surveyed systems as-
sume that queries are either summaries of sensor readings ordetailed data sets of readings, however, there is
no explicit definition of summary queries. Goelet al. are interested in obtaining detailed data sets from sensor
networks for external storage [9]. They propose an energy-efficient paradigm for collecting detailed sensor
data called “PREdiction-based MONitoring” or PREMON. PREMON utilizes spatio-temporal correlations in
sensor data in order to reduce the size of data communicated from the sensors to the base-station. Specifically,
PREMON reduces communication cost by predicting future sensor data, so called ”prediction-model”, at the
powerful base-station, then sending these predictions to the sensors. The sensors are instructed to not send their

1Recall that processing cost is negligible compared to communication cost [17].
2Generally, we assume that we are only interested in energy consumed by sensor nodes, i.e., any other energy consumption has no

cost.

4



reading to the base-station if the readings are within a predefined threshold from the prediction. Their approach
is inspired by the similarities between sequential frames ofdetailed sensor readings and MPEG movies. Gane-
sanet al., on the other hand, are interested in systems that enable multi-resolution queries on sensor data, i.e.,
summaries as well as detailed data sets [7]. Specifically, they propose a unified view of sensor data handling
systems that incorporates local long term storage, multi-resolution queries, and efficient support for spatio-
temporal pattern mining. They emphasize the importance of considering spatio-temporal correlations between
sensor readings when designing architectures for such systems, in cost models, and in metrics of evaluation.
They experimentally show that utilizing such spatio-temporal correlations in sensor data can significantly re-
duce its size via compression. Hence, they provide a distributed, hierarchical, and multi-resolution long term
storage that is based on hierarchical wavelet decomposition. The last contribution in this area is due to Rat-
nasamyet al. [19, 18]. They introduce a DCS-based data dissemination algorithm for storing sensor data. Their
focus is on sensors deployed in harsh environments such as habitat monitoring and so on. The identity of the
sensors which collected the data, in their approach, is less relevant compared to the collected data. Although
this is not usually a realistic assumption, it is appropriate in some applications such as habitat monitoring and
tracking of animals, where data represents animal motion while queries involve events about tracking specific
animals. Therefore, sensor data is “named” and accessed viaits name using a data centric technique. All data
with the same general name are stored at the same sensor node, not necessarily the one that collected the data.
Therefore, queries to specific data can be sent directly to the node that store the data rather than flooding the
entire network with the query. In the rest of this section we discuss each approach in more details, highlight its
limitations, and discuss some open problems that need to be solved.

3.1 Prediction-based Models for External Storage

PREMON aims at collecting detailed data sets from wireless sensor networks, for external storage, in an
energy-efficient manner. The authors refer to this scenarioas “monitoring” of sensor networks. PREMON ex-
plicitly benefits from existing spatio-temporal characteristics in sensor data. In particular, the authors derive an
analogy between snapshots of sensor readings and images based on the fact that spatio-temporal characteristics
of data are common among the two. Specifically, they compare pixels in images to individual sensors’ readings
in snapshots of detailed sensor data and show that sequencesof sensor readings are similar to sequential frames
of MPEG movies. They then adapt MPEG encoding and algorithmsto sensor data. The base-stations in PRE-
MON work as predictors that forecast the set of readings thattheir sensors are going to sense in the near future.
These predictions are represented in concise forms, so called “prediction models”, and sent to the sensors. The
sensors then transmit their sensed readings only when they are different from the predictions by more than a
pre-defined threshold. It is clear that there is a significantoverhead at the base-station for computing these
prediction models and for sending them to the sensors. The authors argue that this overhead can be reduced
by using algorithms that produce high percentage of correctpredictions majority of the time, and they show
one such algorithm. However, We think that although we assume that base-stations are powerful enough to
compute the prediction models, the time overhead cannot be ignored. This clearly restricts the scalability of
this approach both in the size of the network (number of sensors) and in the data sampling rate.

3.1.1 Open Problems

Approaches that benefit from spatio-temporal correlation in sensor data face several challenges. First, how to
generalize the approach to summary queries, e.g., aggregates? Specifically, are there spetio-temporal correla-
tions among aggregates? Second, how can we learn long and short term patterns in the data online? Never-
theless, can static correlations be learnt “efficiently” online? Can unstable correlations that varies with time be
learnt online? We believe that there is a long way to go in order to understand and benefit from correlations in
sensor networks.

5



3.2 Dimensions for Local Storage

The focus of this research is to design Dimension, a system that enable multi-resolution queries on sensor
data, while incorporating hierarchical and distributed long term storage. This systems utilizes spatio-temporal
correlations between sensor readings by performinglocal compressions on the time dimension thendistributive
compression on the space dimension in order to optimize the overall energy consumption3. The Dimension
approach can be summarized in the following three steps.

Temporal decomposition In this step, local time-compression processing is performed at each sensor node.
This processing is local with no communication overhead.

Spatial Wavelet decompositionThe spatial decomposition is performed via a special routing protocol called
wavRoute. Data reduction is performed by applying multi-level two-dimensional wavelet transform on
the coefficient obtained from the first step, the one-dimensional temporal data, using subband coding.
The goals of this step are to minimize communication overhead, balance communication, storage, and
computation load among all nodes.

Long term storage Long term storage is performed via aging the wavelet compression progressively over the
time. It aims, in general, at enabling spatio-temporal pattern mining.

3.2.1 Open Problems

Dimension is still under development. Once the system is implemented the qualitative benefits of temporal
and spatial data compressions can be better studied. Theoretically, better compression does not necessarily
translate to better energy savings in sensor networks sinceboth data transmission and passive listening have a
cost. The effect of compression on the accuracy of differentqueries needs extensive investigation. In general,
it is not straightforward to quantify compression benefits and to schedule communication in order to obtain
energy savings while performing the compression. Also, it isexpected that the compression ratio, the total
energy savings, and the performance of queries will change based on the application, the network topology, and
the nature of the sensed phenomena. However, how can these metrics be measured beforehand? Nevertheless,
correlation-learning related problems, similar to PREMON, are still open.

3.3 Geographical Hash Tables for Data Centric Storage

The authors of this approach assume that sensor data can takeone of two forms: observations (low-level
readings) or events (predefined grouping of data). They alsoassume that observations are too massive to be
directly communicated to outside the network, and therefore, events are defined and queried instead. However,
if the users are interested in the low-level observations, they can explicitly extract them from the corresponding
node(s). Events are explicitly defined by the users using specific instructions (tasks, e.g., taking readings). The
instructions also specify where to store the event upon detection. The key components of the data dissemination
approach can be summarized as follows.

GHT: a Geographic Hash Table

Geographic hash tables are used to hash the events (sensed data) to the node where it will be stored. The hashing
is computed based on a key associated with each event. The nodes are assumed to know their geographic
location, e.g., by using a GPS. The GHT hashes keys into geographic coordinates, and stores a (key, value) pair
at the node geographically closest to the hash coordinates of that key, also called the home node. It ensures

3Recall that time compression is local, and therefore, is cheaper than space compression that requires communication between
sensor nodes.

6



that the load is distributed evenly throughout the network by using a geographical hierarchy, i.e., when many
events map to the same node,structured replications are used, in which these events become distributed among
multiple mirrors. Two operations are defined to store and retrieve data called Put(k,v) and Get(k), respectively.
A suitable routing protocol, called Greedy Perimeter StateRouting (GPSR), is used. This protocol has two
functionalities: (a) greedy forwarding algorithm that forward packets progressively toward their destination,
and (b) perimeter forwarding algorithm, that is based on theright hand rule, for forwarding packets when greedy
forwarding is not applicable. Specifically, when there is no node “geographically” closer to the destination than
the current node. In this case, the packet traverse the perimeter that encloses the destination, also called the
home perimeter, and come back to the home node.

PRP: a Perimeter Refresh Protocol

PRP is a novel protocol that is based on the perimeter forwarding algorithm of GPSR. It provides both per-
sistency and consistency when nodes fail or move. It stores a copy of the (key, value) pair at each node on
the home perimeter, i.e., data is replicated locally close to the original home node. It also refresh these copies
periodically, which ensures that the copies will be stored at the correct node, i.e., closest to destination, even
after node failure or topology changes. PRP generates very low traffic especially in dense networks where
perimeters are quite short (3 hops in length). The advantageof this approach lies in its utilization of high local
communication which is efficient in dense networks. Nevertheless, scalability in database size and network size
are ensured by using a data-centric storage approach.

3.3.1 Open Problems

GHT hashes keys uniformly over the geographic space. When nodes in the network are distributed non-
uniformly, the efficiency of the algorithm will definitely decreases due to skewness in storage and forwarding
loads. Hence, an open problem is “how can we adapt to suchrealistic situations?”. Another aspect is that GHT
implicitly assumes foreknowledge of the space boundary and smart nodes that are aware of their geographic
locations. It is not clear how to adapt to situations where theboundaries dynamically change or even not known
beforehand at all. Also, “What can we do in situations where only approximate node location are provided
or when we have no knowledge of locations?”. We believe that mostof these open problems motivate DCS
approaches that are not based on geographical hashing.

3.4 Experimental Evaluations

The major evaluation aspect of any storage approach is the total energy consumption in the network. PRE-
MON was implemented and evaluated in real sensor network of very small size (5 sensors). Evaluations showed
that the approach can cut down the energy consumption by several orders of magnitude. Dimension, on the other
hand, is still under implementation. Simulation results, however, showed that Dimension gives better results in
the worst case analysis compared to a fully centralized technique. However, the improvement are not as signif-
icant in the average case. The cost metric in this approach sofar is either compression-communication tradeoff
or compression-error (signal distortion due to lossy compression) tradeoff. Currently, there is no evaluation of
compression versus query performance or compression versus computation overhead. The approach still needs
extensions to these cases as well as hybrid methods that weights these different parameters (i.e., communica-
tion, error, query performance, and computation). For GHT,two metrics were evaluated: (1) the total usage,
i.e., the total number of packets sent in the network, and (2) the hotspot usage, i.e., maximum number of packets
sent by any particular sensor node. The evaluations showed that GHT is a preferable storage approach in situ-
ations where the network size is large (with only one base-station!) and the number of queried events is much
less than the total number of stored events. They also showed that if the number of events is large compared to
the network size, a local storage approach will be preferable. Finally, the evaluations showed the effectiveness

7



of the PRP refreshing protocol in offering high data availability, even in node failures and mobility situations.
An important critique of Dimension and GHT, however, is that the authors compared the performance of their
system against a fully centralized networks with large number of nodes. It looks somewhat clear, and indeed
trivial, that the centralized approach will fail in this case. Definitely, in large networks one would divide the
network, e.g., geographically, into clusters of nodes of suitable size and use a centralized solution in each sub-
network. It will be far more interesting to make a performancestudy against networks of this structure. For
PREMON, a more extensive evaluation of the approach is clearly still needed, using both simulations and real
systems, in order to confirm the preliminary results .

4 In-network Aggregation

This section summarizes recent research on online aggregation of sensor streams. Work on this topic is
largely due to the USC/ISI and UCLA communities [13, 12, 22, 14,10]. The research generally focuses on
collecting answers to posed aggregate queries by processingthe query in the network, in a distributed fashion.
This approach differs from centralized processing approaches, i.e., external storage techniques, in that the later
collects individual readings at a powerful server and processes any query centrally. Centralized approaches,
therefore, are considered costly in some applications whereindividual raw readings are not important. Fur-
thermore, queries here are assumed to be simple aggregates with a structure similar to aggregates in traditional
databases. Hence, they are different from summary queries considered in data-centric techniques. In particular,
queries are assumed to be traditionaldecomposable aggregates such as min, max sum, count, average, etc.
Decomposable aggregates are those queries that can be evaluated using distributed algorithms. We will discuss
this property in more details later in this section. An SQL-like language is also used to define such aggregates
queries.

4.1 Two Approaches: An Overview

We consider two approaches to in-network aggregation, TAG [13, 12], a Tiny AGgregation service for ad-
hoc sensor networks, and aggregation for monitoring wireless sensor networks [22]. Routing and processing of
data cannot be separated in wireless sensor networks. The twoapproaches, that we will discuss below, share
the same technique of in-network processing. They basically differ in how the data is routed in the network and
how the answer to the query is collected. Moreover, although the application of each approach seems different,
their general objectives are almost identical, i.e., distributed computation of aggregate queries.

Maddenet al. [12, 13] motivate the need for building systems that provideaggregation in wireless sensor
networks as acore service. They aim at providing a generic aggregation service in sensor networks in which
users express simple aggregation queries from a base-station and the query is then distributed and processed
in the network. It uses an SQL-like language with no joins. It also assumes a single append only table called
“sensors” with one attribute per sensor input. TAG serve applications that involve remote, difficult to administer,
sensors such as monitoring building integrity during earthquakes, habitat monitoring, monitoring temperature
and power usage, etc. The authors argue that in such applications, only summaries or aggregates are required
rather than the raw sensor data. The objective of Zhaoet al. [22], on the other hand, is to build a monitoring
infrastructure that indicates node failure and other abnormalities of wireless sensor networks, deployed in harsh
environments. Their proposed monitoring architecture continuously collects aggregates of different network
properties such as number of active nodes, residual energy,loss rate, packet counts, energy levels, etc., in an
accurate and efficient way by using decomposable aggregatesfrom the entire network. The architecture detects
any sudden change in these properties and, consequently, examines the cause of that change in more details.
They provide three levels of monitoring in their approach: Digest, Scans, and Dumps. Each monitoring level
consists of a class of tools. In theDigest level, the architecture continuously collect aggregates of network
properties. In case of a sudden change, theScans tools provide global views of the system state in order to
guide system administrator to the location of abnormality.Finally, Dumps enable users to collect detailed node
state for diagnosis, upon request. Due to similarities between the two approaches, in the rest of this section we

8



discuss the general technique of in-network aggregation and only highlight the basic differences between the
two proposed approaches.

4.2 Query Evaluation

Aggregate queries in in-network aggregation are evaluatedin the network using two phases: a distribution
phase followed by a collection phase. Only decomposable aggregates such as min/max, sum, average, and
count, can be evaluated using such a distributive approach.

Distribution Phase

In this phase the query is distributed to every node in the network. A tree rooted at the base-station is used for
data routing, also called the routing tree. Irrelevant datais discarded and only relevant data is combined into a
more compact form, i.e., communication cost is reduced in thisapproach as compared to collecting raw sensor
data. The processing continues until the result is finally computed and routed back toward the user. Consider
the following illustrative example, shown in Figure 1, where the count of nodes in the network is required.
The count query is first flooded to every node in the network starting at the base-station. Each leaf node in the
tree reports “1” to its parent. Parents sum counts of their children, add “1”, and then reports the result to their
parents, and so on. The count, hence, propagates up the routing tree and reaches the root.

4+2+1


3+1
 1+1


1
 1
 1
1


Base-station
 Count = ?


Count = ?


Count = ?


Count = ?


Count = ?
Count = ?
Count = ?


Figure 1. A simple in-network aggregation scenario

Collection Phase

In the collection phase the time to evaluate the query, so called an epoch, is subdivided. Parents collect data
from children at specific time intervals. These intervals are properly selected to allow collection, combining
of partial results, and propagation up the network. Eventually the required aggregate arrives at the root. It is
also worth mentioning that similar approach is used for aggregates with grouping. Here, partial aggregates are
combined with group id(s) in order to distinguish different groups.

4.3 Routing

Two legitimate questions that arise during query processing are how the routing tree is built and how sensitive
this in-network aggregation technique is to node and communication failures. We will defer the answer to the
second question till we discuss the performance of the two approaches. The answer to the first question,
however, is what distinguishes the two approaches from each other. The TAG approach can use any routing
algorithm that provide two functionalities: (1) ability todeliver query requests to every node, and (2) ability to
provide one or more routes from every node to the root. In particular, it uses a tree-based routing where one

9



node is the root. The root periodically broadcasts messagesasking sensors to form a routing tree. The message
contains the root id and level. When sensors hear the messagethey assign their own level to the message level
+ 1, and assign their own parent to be the sender of the message.Sensors then rebroadcast the routing message
with their own ids and levels. Children select another parent when parent fails. When specific nodes wishes to
send a message to the root it broadcasts the message to its parent, and so on. Zhaoet al., on the other hand,
propose a routing (propagation) technique, called “Digest Diffusion”. This routing techniqueimplicitly builds
a routing tree and propagates partial results up this tree towards the root to compute the aggregate query. The
routing technique does not assume any base-station or a pre-specified hierarchy, rather, it implicitly construct
a “digest tree” based on computing either a “min” or a “max” aggregate as follows. Consider the max query,
each node� sets its perceived maximum value��� to its own value, the source of the maximum��� to � , the hop
distance��� to 0, and periodically sends�	�
���
�����
����� to its neighbors. When node� receives a message from its
neighbor� with ��� � ��� , it sets��� to ��� , ��� to �
� , ��� to ����� � , and its parent��� to � . Node � may switch its
parent to� if node � provides the same maximum value but��� is less than� � . Gradually all nodes agree on a
node � to be the source of the maximum with value equals the reading of� . This technique converges in time
proportional to the network diameter. Other aggregates such as average, sum, and count, are computed using
this tree, i.e., the tree must exist or be built first using min/max aggregate. The digest tree also adapts to root
failure since any node switches to another parent when its parent node fails, also, parents keep response timers
for their children, similar to TAG.

4.4 Performance

The authors compare their approaches with a fully centralized approach that has one access point (base-
station). Despite the fact that this is neither a fair nor a convincing comparison, we include their performance
evaluation for completeness of discussion. As expected, TAG dramatically decreases communication and yields
an order of magnitude reduction in communication cost compared to a centralized approach. The same result
was reported by Zhaoet al. for their approach. Another contribution of Zhao’s performance evaluation, how-
ever, is quantifying the impact of packet loss in sensor networks experimentally. We have already discussed
these evaluations in details in Section 2. In general, they showed that heavy packet loss and link asymmetry can
be quite common in sensor networks. Also, that this high lossrate and asymmetry can affect the routing tree
construction, and in turn, produce significant errors and oscillations in aggregate computation. They showed
that different aggregates have different robustness characteristics. For example, min/max queries are the most
robust, while count and sum aggregates are sensitive to loss since they rely on partial results from every sensor.
The robustness of the average query depends on the distribution of the data, i.e., large uniformly distributed
data is more robust compared to skewed distributions. They proposed a low-level networking solution to this
loss problem which is based on link quality profiling. In contrast, Maddenet al. use various techniques, in
TAG, in order to improve tolerance to loss and to optimize thecommunication cost such as: (1) caching the
last readings of children, (2) snooping by utilizing the shared radio channels, and (3) guessing, i.e., providing
a guess for min/max aggregate so that sensors do not have to send their own values if they do not contribute
to the guessed result4. They generally benefit from the tight integration of query processing with routing in
in-network aggregation. Realistic evaluations of the basic approach of TAG, i.e., in the existence of failures,
etc., and without the use of any loss tolerance techniques, showed that TAG is not tolerant to loss. The tolerance
improved “slightly” for some of the above mentioned recovery techniques.

4.5 Discussion and Open Problems

In-network aggregation is suitable for specific applications such as monitoring in harsh environments where
only summaries or aggregates are required rather than the raw sensor data. However, in-network aggregation
cannot easily or efficiently be generalized to other applications with ad-hoc queries or complex queries, or those

4The use of guessing bears similarities with PREMON [9].

10



that require many different aggregate to be computed simultaneously. Nevertheless, history of sensor readings
is very useful in many applications where off-line data mining techniques can be applied. Unfortunately, no
history of data can be obtained using an in-network processing approach. The overhead of building and main-
taining the routing tree should not also be ignored. Moreover, there is a considerable waiting-time overhead,
in this in-network technique, till answers become availableto the end users. This is due to the hierarchical
fashion in which the queries are evaluated. This time overhead scales linearly with the network diameter. All
these limitations make in-network aggregation impractical in many applications. The major drawback of the
two approaches for in-network aggregation, discussed above, is their attempt to compare their techniques to
fully centralized approaches in order to show their superiority. Therefore, more experimental studies need to be
performed to fully understand the merits and limitations ofin-network processing. It is worth mentioning that
the functionality and performance aspects of TAG have been extended recently in [14], where data acquisition
issues and their impact on query optimization and executionwere discussed. Also, in [10], where sophisticated
queries were introduced for the purpose of topographic mapping, wavelet-based compression, and tracking.

Node failures and packet loss are very common in sensor networks. Aggregate computation is, in general,
sensitive to loss. This motivates the need for designing general-purpose data cleaning tools for sensor data
streams. These tools should not be suitable for data aggregation only, rather, it should be generic and scalable
in the number of sensors. This task is very challenging giventhe need for an online tool and due to the severe
limitations of sensor networks.

5 Architectures for Sensor Streams

So far we focused on wireless sensor networks that are basically used for monitoring harsh environments.
The posed queries in such deployments were about summaries ordetailed sets of sensor data. Furthermore,
the major objective was to provide “primitive” mechanisms for gathering sensor data that are energy-efficient.
In order to achieve this objective, all approaches, discussed above, were generally application-specific and,
clearly, cannot be changed on the fly to suit ad-hoc queries. In this section, on the hand, we discuss research
on modeling sensor streams and defining abstractions to represent sensor networks as databases [2, 15, 21]. We
also discuss the recent work of Maddenet al. on designing generic architectures for queries over streaming
sensor data [11]. The research discussed in this section aims at constructing sophisticated systems for sensor
networks that are not application-specific. These systems enable three types of queries on sensor streams:
historical queries, snapshot queries, and long-running queries. Historical queries are defined as aggregates over
historical data while snapshot queries specify values of sensor data at a given time instance. Long-running
queries are those queries that run continuously over time interval [2].

Traditional database management systems are based on data-pull techniques and an off-line execution of
queries. In contrast, sensor data streams consist of massive flow of periodic sensor samples that are “pushed”
continuously to the database. Furthermore, queries on sensor data have a real-time nature, i.e., they become
useless if their deadlines are missed. Due to this real-time nature and the continuous flow of sensor data, a
near real-time processing of such queries is essential. Therefore, traditional database management systems are
not suitable for sensor streams and stream management systems are needed instead [11]. However, traditional
streaming systems, e.g., Aurora [3], do not take the resource constraints of sensor networks into consideration
during query processing. Hence, traditional streaming systems are also inapplicable to sensor streams, and
we conclude that handling of sensor streams requires specialstreaming systems that adapt to the resource
limitation of sensor networks. Maddenet al. argue that existing traditional database management systems
handle either streaming data (push-based) or static data (pull-based) but not both. Hence, they propose an
architecture for managing multiple queries over streams ofsensors and traditional data sources. In other words,
a hybrid approach that allows queries that combine streamingpush-based sensors with traditional pull-based
data sources. Their architecture aims at optimizing the useof sensor resources while maintaining high query
throughput. In parallel to this work, the objective of Gerkeet al., in Cougar, is to define abstractions that
enable representing sensor networks as databases. Specifically, they model each sensor type as an abstract data

11



type (ADT). They also define semantics for sensor databases where each long-running query is modeled as a
persistent view. This view is maintained during the given time interval of that query. In their work, stored data
are represented as relations while sensor data are represented as sequences (time series) [2, 15]. In general,
the two research directions are considered complementary to each other. In this section, however, we focus on
Fjord, the architecture proposed by Maddenet al. since it is more relevant to our discussion in this survey. We
will only highlight some recent relevant contributions of Gehrkeet al. later in this section.

5.1 Fjording Sensor Streams: An Overview

The architecture consists of two major components: Fjord and sensor proxies. Figure 2 illustrates this basic
architecture. Users issue queries using sensor catalogs to the query processor. The query processor processes
the query, instantiates operator(s), and looks up corresponding sensor proxy (the specific functionality of the
proxy will be discussed shortly). The proxy that controls relevant sensors, instructs them to relay their readings.
The sensors relay their readings to the proxy either as raw orprocessed signals, e.g., aggregate. The proxy packs
these samples as tuples and forwards them to the query processor. The processor processes the query using the
provided data and, finally, output the answer to the end users.

Proxy


User Terminal


Sensors


Query Processor


Figure 2. The Overall Architecture of Fjord

Fjord

Fjords, Frameworks in Java for Operators on Remote Data streams, are generalized query plans for sensor
streams. They provide non-blocking (passive) and windowed operators that allow queries over both streaming
push-based sensors and traditional pull-based data sources. In other words, they integrate streaming sensor data
(push-based) with disk-resident data that are pulled by traditional operators (pull-based). Pull-based blocking
operators are not suitable for sensor streaming for severalreasons. First, sensors cannot keep their receivers on
at all times listening to requests for samples due to their resource limitations. Second, sensor networks suffer
several problems that make sensor data highly liable to latency and loss. Finally, sensor streams are never
ending, and hence, operators on the stream cannot be blocking, e.g., sort and some join algorithms cannot be
used. Therefore, operators in Fjord do not pull data from sensors to process, rather, they operate on the sampled
pushed data from the sensors.

Fjord provides the functionality and interface necessary to integrate streaming sensor flow into query plans.
Specifically, similar to traditional database systems, Fjord consists of operators that export an iterator-like
interface and are connected together via pipes or queues (i.e., Fjord = operators + queues). Each operator has
a set of input queues and a set of output queues. It reads tuples from the input queues in any order and output
tuples to some or all of the output queues. Queues are responsible for routing data from one operator to another.
They can either be push or pull queues. Each operator in the query evaluation plan represents a state in a

12



transition diagram (state machine). Given the current state and some set of inputs, the operator either moves to
a new state or remains in the same state and possibly producesa set of tuples as output. This design reduces the
total number of threads in the system since all state machineoperators can run in a single thread. Unlike other
traditional database systems, operators in Fjord do not block if data is not available, rather, they just move back
to the same state, without forcing them to output any tuples. Finally, it is worth mentioning that Fjords provide
support for combining multiple queries into a single evaluation plan. I.e., they allow processing from multiple
queries to share the same data stream and be in a single Fjord.They also support handling operations with
multiple inputs and outputs. Experimental evaluations of Fjord showed that this approach is indeed scalable in
the number of simultaneous queries. It also revealed that combining related queries into a single Fjord increases
the query throughput.

Power sensitive sensor-proxy

The proxy serves as a mediator between the physical sensors and the query processing environment. It uses
control messages to switch the sensors on and off and to adjusttheir sampling rate at any time. This would result
in considerable energy savings if users are not interested in querying some specific sensors or even all sensors
for long periods of time. Proxies can also control the processing-communication tradeoff by instructing their
associated sensors to perform simple aggregation on the samples before transmitting the data. This functionality
reduces the load of query processing at the Fjord(s) as well.

5.2 Discussion and Open Problems

The Fjord approach is geared toward sensors with limited resources. Fjord, however, is a centralized archi-
tecture and lacks support for advanced query processing techniques. It also lacks optimization tools e.g., that
combines common subparts of user queries in order to increase query throughput [11]. In contrast, the early
work of Gehrkeet al. on the Cougar system was geared toward more powerful sensors.Recently, they extended
their work and considered the former class of sensors, i.e, sensors with more limited resources. Specifically,
they adopted an in-network distributed processing approach into their original Cougar system in order to best
utilize sensor resources and introduced novel optimization techniques that suits this class of sensors. Whenever
a query is defined, a query optimizer generates an efficient distributed query plan for in-network processing that
aims at reducing the resources usage. The catalog information and the query specification are utilized in order
to determine the best plan. The generated plan defines the exact steps for executing the defined query such as
data flow between sensors, specific computation plan, etc [21]. One important note here is that both Fjord and
Cougar have emphasized the importance of proxies as controlling components.

There are numerous open problems and research directions insensor streaming systems such as the ones
discussed in this section. Some of these problems were highlighted by Gehrkeet al. in [21]. For example,
they highlighted the need to overcome limitations of in-network processing, especially synchronization. Such
limitations arise from delays and high loss rate in sensor networks as we discussed above in Section 2. Specif-
ically, the design and implementation of adaptive systems,that accommodate sensor delays and/or failure, is
an exciting research direction5. Moreover, the functionality of the currently used query languages needs to be
extended. These languages were not designed for resource constrained data sources such as sensor devices. As
we also discussed earlier in this paper, a good query plan on sensor streams is not necessarily the one that only
minimizes energy or execution time. In particular, new costmetrics need to be defined that tradeoff various
factors. Nevertheless, catalog management related problems need to be solved. Exact and complete meta-
data about sensors, e.g., their position, workload, etc., is hard to obtain, store centrally, or updated frequently
enough. Therefore, new techniques that utilizes only partial metadata are needed.

5This functionality is not yet provided neither by Fjord nor Cougar.

13



6 Erroneous Sensor Data

In this section we give an overview of our ongoing work on handling noisy sensor data [5]. We briefly
discussed, in Section 2, that sensor data is expected to be imprecise. The degree of imprecision varies depending
on several factors such as sensor cost, environmental effects, etc. Sensor data is basically originating from
“actual measurements” of some physical phenomenon and, as such, are subject to several sources of errors. For
example, noise from external sources, inaccuracies in the measurement technique, etc. Examples from real-life
include, but are not limited to, sensors that record distances to a fixed point by using signal strength. In this case,
the estimated ranges can vary widely as signal strength values at the sensor are subject to external conditions.
Weights of trucks is another example. They can be measured bymeans of strain gauges attached to bridges, and
therefore, can be affected by other vibrations and calibration drift. Also, the accuracy of temperature sensors
depends on their cost, and hence, imprecision in temperature data is highly expected.

The cost of imprecision can be significant if they result in animmediate decision or actuator activation. We
believe that sensors will be ubiquitous in the near future, and will become a major source of information for
real-time decision making. This motivated our recent work on handling erroneous sensors. This problem does
not generally arise in traditional databases where the source of data is either an explicit data entry operation or
a transaction activity. The origin of data in this case is typically business, financial or personnel. The database
management systems usually assume clean data with no errors,and noisy data, if any, is assumed to be cleaned
by an off-line and independent operation prior to storage ofdata and evaluations of queries. Such off-line
operations, however, are usually tedious, lengthy, and require human expertise [16]. Clearly this scenario is not
suitable for any data stream. Therefore, in the rest of this section we highlight our recent research on “online”
cleaning of noisy sensor streams.

6.1 Online Cleaning: An Overview

The major objective of our current research is to obtain accurate uncertainty models of the true unknown
sensor readings in an online fashion. We explicitly incorporate an error model for each of the noisy data
sources (sensors). We use the observed noisy readings in conjunction with these error models to provide
accurate uncertainty models of the unknown true sensor readings online. The resultant uncertainty models
could then be used to estimate real-time queries on sensor data. The uncertainty model can be computed either
at the sensor level or at the database server when sensor data arrives. However, models derived at the sensor
level may have to simpler than those derived at the powerful database server. This is due to obvious processing
limitations of sensors, discussed before. Specifically, we use a Bayesian-based estimation approach to model
uncertainty in sensor data due to random errors. We start by obtaining an explicit Gaussian error model for each
of the data sources. As sensor data flows, we incorporate the likelihood of obtaining the observed values with
prior knowledge of the distribution of the true values and, consequently, we obtain posterior uncertainty models
of the unknown true values, i.e., a probability density function of the true unknown value. Different models
are obtained at each time instance based on the prior knowledge and the observed values. Our approach is
applicable to situations when relatively tight prior knowledge can be obtained. We believe that this is a realistic
approach since sensor measurements are usually about a well modelled physical phenomena, and hence, a prior
knowledge can easily be obtained.

We argue that models of errors associated with measured sensor data have to be part of any data model in
sensor databases. Also, theestimate operator, that provides a probability distribution of the measured attribute,
should be a fundamental operation in sensor databases. To the best of our knowledge there is no other research
that focuses on modeling errors in noisy sensor data and on deriving accurate uncertainty models of such
imprecise erroneous sensors. Existing work has assumed theexistence of Gaussian uncertainty models of
sensor readings (Gaussian pdf). Such models, however, are not accurate since they do not benefit from prior
knowledge of the data distribution. The focus of the authors,on the other hand, is to introduce techniques for
storing these models as abstract data types (ADTs) and on indexing and retrieving them [6]. Others assumed

14



uncertainty in sensor databases due to lag of updates, consequently, the data in the database is only an estimate
of the actual state. However, this work does not deal with erroneous data and it is not clear how uncertainty due
to noise can be incorporated in the current model [4].

In presence of noisy data, queries can only provide an estimate of its true value. We are currently working
on several algorithms to evaluate a wide range of queries using our proposed Bayesian uncertainty model. In
general, we are investigating algorithms that are not tied toa specific model of uncertainty, and hence, can
easily be generalized to other models of uncertainty. We aimat evaluating real-time queries approximately and
providing guaranteed error bounds.

6.2 Open Problem

There are several interesting research paths and open problems related to data cleaning in sensor streams.
Simply, which data cleaning tasks are necessary/relevant tosensor streams? Irrespective of sensor limitations,
can they be performed in one pass? If so, can they be adapted/further approximated to suit limitations of sensor
streams? For example, in addition to noise, we believe that missing values are, and will continue to be, a
major data cleaning task in sensor streams. Missing values persist even when low-level networking recovery
techniques are used [22, 12]. This problem looks even tougher to solve (online) than imprecision due to noise.
Missing values may not seem to be an important problem if few of them are expected. However, a more
interesting problem is to be able to sample the sensor field for few samples from few sensors and then reconstruct
the entire data approximately. This scenario provides muchenergy/processing savings. Therefore, we are
currently extending our research on data cleaning to include this problem. There are also several open problems
related to query evaluation over multidimensional imprecise data. Specifically, estimation of multidimensional
queries over noisy data. How can we evaluate queries in this case? Which attribute(s) to pick first in order to
obtain better confidence? Can we gather additional data in order to improve our confidence? Which data to
gather? etc. Finally, another direction is deriving cost metrics for the effect of query estimation on decision
making and actuation, e.g., the cost of false positive and/or false negative.

7 Conclusions

We have emphasized several problems and limitations of wireless sensor networks and sensor data stream-
ing. We have also discussed several research directions in sensor streams and highlighted major open problems
in these directions. In particular, we surveyed current research in storage and gathering of sensor data, architec-
tures for querying sensor streams, and data cleaning. Sensor networks have certain limitations that make sensor
streaming, in general, a challenging task, different from traditional databases and traditional streaming. These
limitations should explicitly be addressed during acquisition, storage and querying of sensor data. In general,
local processing techniques should be favored whenever possible. Sensor data also have certain characteristics
that do not usually exist in traditional data such as its spatio-temporal characteristics. These characteristics can
be utilized in order to optimize the usage of sensor resources and overcome some limitations of sensor net-
works/data. However, experimentations and characterizations is still needed in order to fully understand such
characteristics.

We have already listed several challenges in sensor streamsthroughout this paper. For example, the study
of spatio-temporal correlation characteristics, especially dynamic correlation. Also, imprecision due to noise,
missing values, massiveness of data, etc., and deriving new optimization metrics in query evaluation. Our
ultimate goal is efficient systems that address all these challenges. In the near future, sensors will become
very pervasive. They will be embedded in the physical space almost everywhere, collecting overwhelming
streams of data. They will behave similar to web-pages or agents posting and/or offering services. A decision
making infrastructure will be built on top of these sensors. This infrastructure will enable extraction of any
needed information, directly from sensors, on demand, and in real-time. The future of sensor research lies
in designing mechanisms that allow this scenario. Specifically, mechanisms for integrating data from huge

15



number of multiple sources, possibly of different characteristics (sensor type, etc.), cleaning this data, posting
it in appropriate forms, and providing answers to millions ofsimultaneous users’ queries in real-time!!

References

[1] AIM Inc., Radio Frequency Identification. http://www.rfid.org/, accessed on April 2003.
[2] P. Bonnet, J. Gehrke, and P. Seshadri. Querying the physical world. IEEE Personal Communications Magazine,

Special issue on Networking the Physical World, October 2000.
[3] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stonebraker, N. Tatbul, and S. Zdonik.

Monitoring streams - a new class of data management applications. InProceedings of 28th VLDB Conference, Hong
Kong, China, September 2002.

[4] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Evaluatingprobabilistic queries over imprecise data. InACM
SIGMOD Conference, June 2003.

[5] E. Elnahrawy and B. Nath. Cleaning and querying noisy sensors. InSubmitted for review, 2003.
[6] A. Faradjian, J. E. Gehrke, and P. Bonnet. Gadt: A probability space adt for representing and querying the physical

world. In Proceedings of the 18th International Conference on Data Engineering (ICDE 2002), February 2002.
[7] D. Ganesan and D. Estrin. DIMENSIONS: Why do we need a new data handling architecture for sensor networks?

In 1st Workshop on Hot Topics in Networks (Hotnets-I), October 2002.
[8] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin,and S. Wicker. Complex behavior at scale: An

experimental study of low-power wireless sensor networks. Technical Report CSD-TR 02-0013, UCLA, February
2002. Submitted for review to INFOCOM 2003.

[9] S. Goel and T. Imielinski. Prediction-based monitoringin sensor networks: Taking lessons from MPEG.ACM
Computer Communication Review, 31(5), October 2001.

[10] J. M. Hellerstein, W. Hong, S. Madden, and K. Stanek. Beyond average: Towards sophisticated sensing with queries.
In Proceedings of 2nd International Workshop on Information Processing in Sensor Networks (IPSN ’03), March
2003.

[11] S. Madden and M. J. Franklin. Fjording the stream: An architecture for queries over streaming sensor data. In
Proceedings of ICDE Conference, 2002.

[12] S. Madden, M. J. Franklin, and J. M. Hellerstein. TAG: a Tiny AGgregation Service for Ad-Hoc Sensor Networks.
In Proceedings of 5th Annual Symposium on operating Systems Design and Implementation (OSDI), December
2002.

[13] S. Madden, R. Szewczyk, M. J. Franklin, and D. Culler. Supporting aggregate queries over ad-hoc wireless sensor
networks. InWorkshop on Mobile Computing Systems and Applications, 2002.

[14] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The design of an acqusitional query processor for
sensor networks. InACM SIGMOD Conference, June 2003.

[15] P. S. P. Bonnet, J. Gehrke. Towards sensor database systems. InProceedings of the Second International Conference
on Mobile Data Management, January 2001.

[16] S. Parsons. Current approaches to handling imperfect information in data and knowledge bases.Knowledge and
Data Engineering, 8(3):353–372, 1996.

[17] G. Pottie and W. Kaiser. Embedding the internet: Wireless sensor networks.Communications of the ACM, 43(5):51–
58, May 2000.

[18] S. Ratnasamy, D. Estrin, R. Govindan, B. Karp, S. Shenker, L. Yin, and F. Yu. Data-centric storage in sensornets.
In First Workshop on Sensor Networks and Applications (WSNA), Atlanta, GA, September 2002.

[19] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker. GHT: A Geographic Hash Table
for data-centric storage. InProceedings of 1st ACM International Workshop on Wireless Sensor Networks and
Applications, 2002.

[20] N. Sadagopan, B. Krishnamachari, and A. Helmy. The acquire mechanism for efficient querying in sensor networks.
In The First IEEE International Workshop on Sensor Network Protocols and Applications (SNPA 03), May 2003.

[21] Y. Yao and J. E. Gehrke. The cougar approach to in-network query processing in sensor networks.SIGMOD Record,
31(3), September 2002.

[22] J. Zhao, R. Govindan, and D. Estrin. Computing aggregates for monitoring wireless sensor networks. In1st IEEE
International Workshop on Sensor Network Protocols and Applications, October 2002.

16


