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Abstract

A typical framework of sensor streams is data obtained from wireless networks of sensors, embedded in a
physical space, continuously communicating a stream of data to a database. These wireless networks typically
consist of large number of low-power and limited-bandwidth devices. They are primarily used for monitoring
of several physical phenomenon such as, contamination, climate, building structure, etc., potentially in remote
harsh environments. Research in sensor streaming has been generally focused on ultimate utilization of such
devices given their limited resources and unattended deployment. This paper surveys current research direc-
tions in sensor data streams. In particular, it emphasizes existing work on storage and gathering of sensor
data, architectures for querying sensor streams, and handling of erroneous sensors. It also highlights some
open problems and discusses research paths to pursue in this exciting research area.

1 Introduction

Wireless sensor networks typically consist of few thousaoidsensors, embedded in physical spaces, con-
tinuously collecting and communicating their data streanthe database. The database usually resides at a
“powerful” device called a base-station. Such sensors arglawver, low-bit rate devices, and usually sampled
at low rate, i.e., few times per second or less, depending dougafactors such as the application, type of
sensors, etc. They are currently used in several real ljécgtions. Specifically, for monitoring several phys-
ical phenomena such as climate, e.g., light, temperature,,wilcd concentration of contaminants, building
structure and response to earthquakes, etc., especiatyniote hard to administer environments. Due to their
low cost (can be as cheap as 10 cents), these devices aréegkfiebecome pervasive, and consequently, to be
a major source of information for databases. In particittethe near future, every object will afford to have a
sensor on it. These sensors will operate as black-boxesdbaitdr diagnostic data, performance data, history
of the object, etc., e.g., in vehicles, cell phones, bridgesiatsisections, computers, inventory, and so on.
Therefore, the future of sensor streams lies in reasoningtauch data and solving any existing problems that
prevent their wide deployment.

The major focus of the current research on sensor streanmg\cathe database community, is data gathering
techniques using network primitives, e.g., [12, 7, 20, 19]isTiesearch takes into consideration the severe
resource constraints of sensor networks, especially groengstraint, and their unattended deployment poten-
tially in harsh environments. Our ongoing work, on the ottend, is primarily focused on online data cleaning
techniques such as cleaning and querying of noisy datagwising outliers, and handling incomplete data due
to missing values, e.g., [5]. Our motivation is that such peois generally limit the deployment of sensors in
the real world as “reliable” sources of information, spesifiy for decision making. This paper surveys current
research directions in sensor data streams. It discussentwork on storage of sensor data streams, aggre-
gation of sensor streams using in-network distributedriegtes, frameworks for querying sensor streams, and



finally, our recent work on handling of erroneous sensoralsih emphasizes some challenges and open prob-
lems in this area that need further investigation and higitéi exciting research paths to pursue while dealing
with sensor data.

The rest of this paper is organized as follows. In Section 2,iwean overview of wireless sensor networks,
their limitations and capabilities, and compare sensca daeams to traditional streams. We present existing
techniques for storage of sensor data in Section 3. Sec8anvys existing research on in-network aggregation
of sensor streams. We present Fjord, an architecture foreguever streaming sensor data in Section 5. We
then discuss our ongoing work on handling imprecision irseemetworks in Section 6. Finally, we conclude
this paper and discuss our view of the future of sensor sgéar8ection 7.

2 Background

In this section, we discuss limitations of wireless sensowagts. We also highlights some of the ma-
jor problems of sensor data obtained from such networks. W& emphasize the characteristics of sensors
considered in this survey, and distinguish between sensgarstng and traditional data streaming.

2.1 Limitations and Problems

Unfortunately, sensors of wireless sensornets have sergsasince constraints [7, 12, 22]. In particular,
they have limited battery life, which, if abused, may causedhnsors to live for only few days as opposed to
few months. In addition, they have constrained commuracatiandwidth (1-100 Kbps), and limited storage
and processing capabilities. For example, a typical sema®rMHz processor, 8KB programming memory,
512B data memory, 10 Kbps Bandwidth only [8]! These energydiadth, storage, and processing limitations
enforce special data handling algorithms and architesttoesensor data streams, that explicitly incorporate
these resource constraints. Pettial have shown that communication cost in sensor networks ig®mfe
magnitude higher than their processing cost [17], and therecurrent approaches for handling of sensor data
usually strive to minimize energy, spent by the sensors,rbpmpcessing this data. This preprocessing aims
at minimizing the size of the data before communicating ith® base-station (database), and consequently,
reduce communication energy. We will later discuss seveiei approaches throughout this paper.

Another serious problem of sensor data streams is incomgih. In particular, existence of missing values
among data obtained from wireless sensor networks. Thermang factors that contribute to this problem
such as packet loss and topology changes. The former angiedless sensornets due to poor links and com-
munication failures, fading of signal strength, packelisimn between multiple transmitters, and constant or
sporadic interferences [22]. Zhabal. have shown the severeness of this problem experimentalbcifgally,
they found that more thah0% of the network links suffer average loss rate50%, and that packet loss of
most links fluctuates over the time with estimated varia@de— 17% [22]. Nevertheless, the topology of a
sensornet is usually continuously changing due to noderésiland node movements, e.g., based on our exper-
imental deployments, on the average; 10% of the nodes may be assumed failed at each sampling attempt.
Most of the existing research on missing values is eithended on providing low-level networking solution
such as [22], or customized solutions that work for specfigiaations such as [13, 12], which is considered a
limited solution. In both cases, the problem persists caitfin less severely. Our ongoing research, on the other
hand, is focused on a general purpose solution for this gnobl

Finally, another prevalent problem in sensor data is inipieg, either due to lag of database update or due to
noisy readings. In the former case, the massiveness ofngsmdind the limited energy and wireless bandwidth
may not allow for continuous and instantaneous updatestterdfore, the database state may lag the state of
the real world. This problem has been addressed recentl).iff he later case, however, is due to inaccuracies
of measurements which is the primary source of data. The sswftinaccuracies include, but are not limited
to: (a) noise from external sources, (b) inaccuracies imtbasurement technique, (c) calibration errors, and (d)
imprecision in computing a derived value from the undedyineasurements. The cost of imprecise data can be
very significant if they result in an immediate decision nmakor actuator activation. Imprecision due to noisy
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readings is considered an important cause of uncertairdgnsor databases, and hence, we are addressing this
problem in our ongoing research [5].

2.2 Capabilities

It is worth distinguishing between sensors used in wirelesaor&s, also called “smart dust”, which are
low-power and have limited resources, and larger more powsefuors, e.g., sensors considered in [15], or
passive sensors, e.g., [1]. The former type of sensors, i.e&t dost, represent the current generation of sensors,
and they are the main focus of this survey. Powerful sensarthe@other hand, are usually far more expensive
than smart dust, and therefore, they are of limited usage. g0al, however, is to have very cheap sensors,
scattered everywhere, collecting data about various fegblienomena continuously. Some of the algorithms
and techniques, that will de discussed in this paper, araiufefsuch powerful sensors as well. Specifically,
discussion of Fjords in Section 2, and noisy sensors in @e&i To the best of our knowledge, there is no
existing research on modeling of passive sensors or degjgfiframeworks for querying such sensors. We
think that this is an interesting research path to pursue.

Capabilities of sensors in wireless networks varies shgbdised on the type of sensors, the nature of queries,
and consequently, the applications. In general, thesesenan perform simple tasks such as forwarding their
raw readings to a base-station or nearby sensors, perfgraiinple aggregations of their own readings, or
performing simple partial processing. Their power and pseitgy resources enable limited storage of some of
their own readings or readings of neighboring sensors kdadl., such sensors are capable of constructing and
maintaining a locally consistent view of its neighborhoad][

2.3 Sensor Streaming versus Traditional Streaming

We have discussed several limitations of wireless sensavankes and problems of sensor data, obtained
from such networks. In this section, we argue that existiagitional streaming techniques are not directly
applicable to sensor streaming, and we highlight some of #jemdifferences between the two areas. The first
distinction is that data of sensor streams are only samlédsecentire population. The sampling rate varies
from application to another, e.g., temperature and light detaisually sampled several times per second, while
contamination is sampled at much lower frequency [14]. Onather hand, the entire population is usually
available in traditional streaming, e.g., data of web logswost streams, stock market, etc. Second, sensor
data is usually imprecise and noisy, while traditional strigey data is exact and error-free [5]. Third, existing
sensor streams is typically of moderate size as comparegetavhelming storage and processing of huge data
in traditional streams. This distinction, however, is tiedthe current applications of sensor streams which
involve data of moderate size, i.e., few thousands of tuplessgtecific time instance. Our conjecture is that
sensors will become very pervasive in the future, and coresetyy sensor streams will be very huge. We will
discuss a scalable architecture for sensor streams ino8estiand we will further discuss our predictions of
the future of sensor streams in Section 7. Fourth, due toattettiat sensors die when they run out of power,
data acquisition in sensor networks is expensive, while dftieditional streaming is considered free with no
acquisition cost. Finally, sensor data has continuous dwr@e., continuous attributes). As such, some of
guestions posed in traditional streaming such as freqtemisi distinct values, etc., are clearly not meaningful
for such domains. Current applications of wireless sendwrar&s, on the other hand, usually involve “simple”
aggregates. We believe that this will continue to be the cese when sensors become pervasive.

3 In-network Storage

In this section we discuss recent research on storage ofrséatsoin the network. Generally, we are inter-
ested in systems that extract data from sensor fields andeensdrs to observe, analyze, and query this data.
These systems should be (1) energy-efficient, (2) scalaltheisize of the network, and (3) self-organizing and
robust against node failures and topology changes at the 8ara. In order to minimize energy consumption,



communication cost needs to be optimized, when storing seeadings and when querying. Specifically, sys-
tems should benefit from general characteristics of seraar, duch as their spatio-temporal nature, to reduce
the size of data communicated to the databaSealability can be achieved by adopting hybrid systems tha
combines distributed and hierarchical structures. Rmadbustness is generally achieved by data redundancy
and low-level networking.

Ganesaret al. argue that existing systems do not satisfy these desigrs gsglecially energy-efficiency
and scalability, and therefore, they introduce an altéraarchitecture for handling of sensor data [7]. For
example, they argue that the objective of hierarchical webhesis to lower load and latency in network traffic
by strategically placing frequently accessed web pages. tawhierarchical web caches are not designed
for resource constrained systems as in wireless sensor mastwdhey also do not utilize space and time
correlations between their data (i.e., web pages) which is conammamg sensor readings. Another argument is
that Geographic Information Systems (GIS), which handlesisgtemporal data, have “centralized” processing
and their design goal is to reduce data search cost, irregpet the energy cost. They also argue that although
the spatio-temporal characteristic of data in media stiegusystems, on the internet, is similar to sensor data,
they are based on space first time next compression. Thetiwbjefthe space-wise compression is to compress
each data frame while the objective of the time-wise comproassito compress the value of each point in the
data over successive frames. A time first space next conipness the other hand, is more resource-efficient
in sensor networks since time compression is performedlyoaathe sensor node, while space compression
requires communication between different nodes, and coesgly, energy. Finally, they argue that cost metric
in lossy compression using wavelets should be a local mitaictradeoff compression versus communication
and not compression versus reconstruction error.

Given our desired design goals, there are generally thrpeaphes for storing data in sensor networks:
external, local, and data centric storage approaches g]9,l4 external storage, sensor data is continuously
sent to a “powerful” collecting point(s). Hence, there is atdor communication of data to the base-station,
however, there is no cost of querying this data (with respes¢tsor energy consumptfar®n the other hand,
data in local storage are stored locally at its original ndgiensequently, there is no cost of data communication,
however, there is a significant cost of querying this dataesqueries will be sent to every node in the network
(e.g., by flooding). Finally, in data centric storage (DCS)adate stored by name, and therefore, there is a
cost of communicating the data from its original node to tbdenwhere it will be stored. However, cost of
querying in this case is reduced since queries are direotdtetnode that stores the data and not to every node
in the network. As a conclusion, there is a significant trdfdeetween energy consumption and data storage
technique. To decide which storage technique to use in afgpéeployment of sensors we need to have a prior
knowledge of the network characteristics and the deploymieat example, the topology of the network and
its use, the number of nodes, the sensed phenomena, andpttoatign (and therefore, the nature of queries),
are all important factors that will affect our decision.

In this section, we discuss research on the three major g@groaches, an external storage approach [9],
a local storage approach [7], and a data centric storageagpr(DCS) [19, 18]. The surveyed systems as-
sume that queries are either summaries of sensor readirdgtailed data sets of readings, however, there is
no explicit definition of summary queries. Gaetlal. are interested in obtaining detailed data sets from sensor
networks for external storage [9]. They propose an eneffigient paradigm for collecting detailed sensor
data called “PREdiction-based MONitoring” or PREMON. PREM utilizes spatio-temporal correlations in
sensor data in order to reduce the size of data communicatetitiie sensors to the base-station. Specifically,
PREMON reduces communication cost by predicting futuressedata, so called "prediction-model”, at the
powerful base-station, then sending these predictionsteghsors. The sensors are instructed to not send their

*Recall that processing cost is negligible compared to comcation cost [17].
2Generally, we assume that we are only interested in energynmtsby sensor nodes, i.e., any other energy consumption has no
cost.



reading to the base-station if the readings are within a fireztbthreshold from the prediction. Their approach
is inspired by the similarities between sequential framedetdiled sensor readings and MPEG movies. Gane-
sanet al., on the other hand, are interested in systems that enabtenmggolution queries on sensor data, i.e.,
summaries as well as detailed data sets [7]. Specifically, pha&pose a unified view of sensor data handling
systems that incorporates local long term storage, mestution queries, and efficient support for spatio-
temporal pattern mining. They emphasize the importanc®wsgidering spatio-temporal correlations between
sensor readings when designing architectures for suchnsgsia cost models, and in metrics of evaluation.
They experimentally show that utilizing such spatio-tenap@orrelations in sensor data can significantly re-
duce its size via compression. Hence, they provide a dig&d) hierarchical, and multi-resolution long term
storage that is based on hierarchical wavelet decomposifithe last contribution in this area is due to Rat-
nasamyet al. [19, 18]. They introduce a DCS-based data disseminationrigigo for storing sensor data. Their
focus is on sensors deployed in harsh environments suchbétath@onitoring and so on. The identity of the
sensors which collected the data, in their approach, is Eegant compared to the collected data. Although
this is not usually a realistic assumption, it is approgeri@t some applications such as habitat monitoring and
tracking of animals, where data represents animal motionewfikries involve events about tracking specific
animals. Therefore, sensor data is “named” and accessét$ viame using a data centric technique. All data
with the same general name are stored at the same sensor nbdecessarily the one that collected the data.
Therefore, queries to specific data can be sent directlygmtde that store the data rather than flooding the
entire network with the query. In the rest of this section wewks each approach in more details, highlight its
limitations, and discuss some open problems that need toltaeds

3.1 Prediction-based Models for External Storage

PREMON aims at collecting detailed data sets from wireless@enetworks, for external storage, in an
energy-efficient manner. The authors refer to this scerawimonitoring” of sensor networks. PREMON ex-
plicitly benefits from existing spatio-temporal charaigics in sensor data. In particular, the authors derive an
analogy between snapshots of sensor readings and imagesdvatbe fact that spatio-temporal characteristics
of data are common among the two. Specifically, they compasdsin images to individual sensors’ readings
in snapshots of detailed sensor data and show that sequafremassor readings are similar to sequential frames
of MPEG movies. They then adapt MPEG encoding and algorittonsensor data. The base-stations in PRE-
MON work as predictors that forecast the set of readingsttiet sensors are going to sense in the near future.
These predictions are represented in concise forms, sdcgtediction models”, and sent to the sensors. The
sensors then transmit their sensed readings only when teayiffgrent from the predictions by more than a
pre-defined threshold. It is clear that there is a significaugirhead at the base-station for computing these
prediction models and for sending them to the sensors. Ttim@uargue that this overhead can be reduced
by using algorithms that produce high percentage of copesdictions majority of the time, and they show
one such algorithm. However, We think that although we assinaebase-stations are powerful enough to
compute the prediction models, the time overhead cannogrmed. This clearly restricts the scalability of
this approach both in the size of the network (number of ssjsmd in the data sampling rate.

3.1.1 Open Problems

Approaches that benefit from spatio-temporal correlatioeeinsor data face several challenges. First, how to
generalize the approach to summary queries, e.g., aggregapecifically, are there spetio-temporal correla-
tions among aggregates? Second, how can we learn long artdesmopatterns in the data online? Never-
theless, can static correlations be learnt “efficientlylimef? Can unstable correlations that varies with time be
learnt online? We believe that there is a long way to go in otdenderstand and benefit from correlations in
sensor networks.



3.2 Dimensions for Local Storage

The focus of this research is to design Dimension, a systetettable multi-resolution queries on sensor
data, while incorporating hierarchical and distributedgl@arm storage. This systems utilizes spatio-temporal
correlations between sensor readings by perforriongl compressions on the time dimension thustributive
compression on the space dimension in order to optimize teeat energy consumptionThe Dimension
approach can be summarized in the following three steps.

Temporal decomposition In this step, local time-compression processing is peréotrat each sensor node.
This processing is local with no communication overhead.

Spatial Wavelet decompositionThe spatial decomposition is performed via a special rgupirotocol called
wavRoute. Data reduction is performed by applying multelewo-dimensional wavelet transform on
the coefficient obtained from the first step, the one-dimaradi temporal data, using subband coding.
The goals of this step are to minimize communication oveth&alance communication, storage, and
computation load among all nodes.

Long term storage Long term storage is performed via aging the wavelet conspzagrogressively over the
time. It aims, in general, at enabling spatio-temporalgratimining.

3.2.1 Open Problems

Dimension is still under development. Once the system isemghted the qualitative benefits of temporal
and spatial data compressions can be better studied. Tivadlye better compression does not necessarily
translate to better energy savings in sensor networks Sioitedata transmission and passive listening have a
cost. The effect of compression on the accuracy of diffegeries needs extensive investigation. In general,
it is not straightforward to quantify compression benefitsl # schedule communication in order to obtain
energy savings while performing the compression. Also, #xpected that the compression ratio, the total
energy savings, and the performance of queries will changedban the application, the network topology, and
the nature of the sensed phenomena. However, how can thesesmhetmeasured beforehand? Nevertheless,
correlation-learning related problems, similar to PREM@#+ still open.

3.3 Geographical Hash Tables for Data Centric Storage

The authors of this approach assume that sensor data caonaekef two forms: observations (low-level
readings) or events (predefined grouping of data). Theyadsame that observations are too massive to be
directly communicated to outside the network, and theeefevents are defined and queried instead. However,
if the users are interested in the low-level observatioresy tan explicitly extract them from the corresponding
node(s). Events are explicitly defined by the users usingifipénstructions (tasks, e.g., taking readings). The
instructions also specify where to store the event upon tletecThe key components of the data dissemination
approach can be summarized as follows.

GHT: a Geographic Hash Table

Geographic hash tables are used to hash the events (seteei dae node where it will be stored. The hashing
is computed based on a key associated with each event. The acgl@ssumed to know their geographic
location, e.g., by using a GPS. The GHT hashes keys into geltigrapordinates, and stores a (key, value) pair
at the node geographically closest to the hash coordindtdsmbkey, also called the home node. It ensures

3Recall that time compression is local, and therefore, isaphethan space compression that requires communicatiorede
sensor nodes.



that the load is distributed evenly throughout the networkubing a geographical hierarchy, i.e., when many
events map to the same noggctured replications are used, in which these events become distributed among
multiple mirrors. Two operations are defined to store andew data called Put(k,v) and Get(k), respectively.
A suitable routing protocol, called Greedy Perimeter SReeiting (GPSR), is used. This protocol has two
functionalities: (a) greedy forwarding algorithm thatvi@rd packets progressively toward their destination,
and (b) perimeter forwarding algorithm, that is based orritjig hand rule, for forwarding packets when greedy
forwarding is not applicable. Specifically, when there is nd@&“geographically” closer to the destination than
the current node. In this case, the packet traverse the pemirthat encloses the destination, also called the
home perimeter, and come back to the home node.

PRP: a Perimeter Refresh Protocol

PRP is a novel protocol that is based on the perimeter foingralgorithm of GPSR. It provides both per-
sistency and consistency when nodes fail or move. It storexpg of the (key, value) pair at each node on
the home perimeter, i.e., data is replicated locally closéeooriginal home node. It also refresh these copies
periodically, which ensures that the copies will be storechatdorrect node, i.e., closest to destination, even
after node failure or topology changes. PRP generates weentrhffic especially in dense networks where
perimeters are quite short (3 hops in length). The advaraatigés approach lies in its utilization of high local
communication which is efficient in dense networks. Nevéehe scalability in database size and network size
are ensured by using a data-centric storage approach.

3.3.1 Open Problems

GHT hashes keys uniformly over the geographic space. Wheesm the network are distributed non-
uniformly, the efficiency of the algorithm will definitely dezases due to skewness in storage and forwarding
loads. Hence, an open problem is “how can we adapt to meatistic situations?”. Another aspect is that GHT
implicitly assumes foreknowledge of the space boundary amattsnodes that are aware of their geographic
locations. It is not clear how to adapt to situations wherebthndaries dynamically change or even not known
beforehand at all. Also, “What can we do in situations wherg/ @proximate node location are provided
or when we have no knowledge of locations?”. We believe that mibdtese open problems motivate DCS
approaches that are not based on geographical hashing.

3.4 Experimental Evaluations

The major evaluation aspect of any storage approach is thkeetioergy consumption in the network. PRE-
MON was implemented and evaluated in real sensor networkrgfsmall size (5 sensors). Evaluations showed
that the approach can cut down the energy consumption byaevders of magnitude. Dimension, on the other
hand, is still under implementation. Simulation resul®ybver, showed that Dimension gives better results in
the worst case analysis compared to a fully centralizedhigale. However, the improvement are not as signif-
icant in the average case. The cost metric in this approatdr $oeither compression-communication tradeoff
or compression-error (signal distortion due to lossy caagion) tradeoff. Currently, there is no evaluation of
compression versus query performance or compressionsveosoputation overhead. The approach still needs
extensions to these cases as well as hybrid methods that wéigise different parameters (i.e., communica-
tion, error, query performance, and computation). For Gid, metrics were evaluated: (1) the total usage,
i.e., the total number of packets sent in the network, and &htitispot usage, i.e., maximum number of packets
sent by any particular sensor node. The evaluations shove¢@GHiT is a preferable storage approach in situ-
ations where the network size is large (with only one bas@statand the number of queried events is much
less than the total number of stored events. They also shdwadf the number of events is large compared to
the network size, a local storage approach will be preferdfitally, the evaluations showed the effectiveness



of the PRP refreshing protocol in offering high data avaiigbh even in node failures and mobility situations.
An important critique of Dimension and GHT, however, is tha #uthors compared the performance of their
system against a fully centralized networks with large nur@benodes. It looks somewhat clear, and indeed
trivial, that the centralized approach will fail in this cadeefinitely, in large networks one would divide the
network, e.g., geographically, into clusters of nodes ofatilit size and use a centralized solution in each sub-
network. It will be far more interesting to make a performastedy against networks of this structure. For
PREMON, a more extensive evaluation of the approach islgletil needed, using both simulations and real
systems, in order to confirm the preliminary results .

4 In-network Aggregation

This section summarizes recent research on online aggregait sensor streams. Work on this topic is
largely due to the USC/ISI and UCLA communities [13, 12, 22, 18], The research generally focuses on
collecting answers to posed aggregate queries by procedgrguery in the network, in a distributed fashion.
This approach differs from centralized processing apgresgci.e., external storage techniques, in that the later
collects individual readings at a powerful server and preegsany query centrally. Centralized approaches,
therefore, are considered costly in some applications wingligidual raw readings are not important. Fur-
thermore, queries here are assumed to be simple aggregé#tes stiucture similar to aggregates in traditional
databases. Hence, they are different from summary quesiesdered in data-centric techniques. In particular,
gueries are assumed to be traditiodatomposable aggregates such as min, max sum, count, average, etc.
Decomposable aggregates are those queries that can betedalaig distributed algorithms. We will discuss
this property in more details later in this section. An S@ellanguage is also used to define such aggregates
queries.

4.1 Two Approaches: An Overview

We consider two approaches to in-network aggregation, TEE 12], a Tiny AGgregation service for ad-
hoc sensor networks, and aggregation for monitoring wisetesisor networks [22]. Routing and processing of
data cannot be separated in wireless sensor networks. Thappvoaches, that we will discuss below, share
the same technique of in-network processing. They bagidifer in how the data is routed in the network and
how the answer to the query is collected. Moreover, althohghapplication of each approach seems different,
their general objectives are almost identical, i.e., digted computation of aggregate queries.

Maddenet al. [12, 13] motivate the need for building systems that pro\adgregation in wireless sensor
networks as &ore service. They aim at providing a generic aggregation serivicsensor networks in which
users express simple aggregation queries from a baserstatd the query is then distributed and processed
in the network. It uses an SQL-like language with no joins.ldbassumes a single append only table called
“sensors” with one attribute per sensor input. TAG serveiapfbns that involve remote, difficult to administer,
sensors such as monitoring building integrity during eguttkes, habitat monitoring, monitoring temperature
and power usage, etc. The authors argue that in such apptisatinly summaries or aggregates are required
rather than the raw sensor data. The objective of Ztab. [22], on the other hand, is to build a monitoring
infrastructure that indicates node failure and other afadities of wireless sensor networks, deployed in harsh
environments. Their proposed monitoring architecturetinoously collects aggregates of different network
properties such as number of active nodes, residual eneggyrate, packet counts, energy levels, etc., in an
accurate and efficient way by using decomposable aggrefjateghe entire network. The architecture detects
any sudden change in these properties and, consequerghires the cause of that change in more details.
They provide three levels of monitoring in their approachgdsit, Scans, and Dumps. Each monitoring level
consists of a class of tools. In thHigest level, the architecture continuously collect aggregatesetwork
properties. In case of a sudden change,Stans tools provide global views of the system state in order to
guide system administrator to the location of abnormakinally, Dumps enable users to collect detailed node
state for diagnosis, upon request. Due to similarities betwlee two approaches, in the rest of this section we
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discuss the general technique of in-network aggregatiahoaty highlight the basic differences between the
two proposed approaches.

4.2 Query Evaluation

Aggregate queries in in-network aggregation are evalugté¢lde network using two phases: a distribution
phase followed by a collection phase. Only decomposableeggtgs such as min/max, sum, average, and
count, can be evaluated using such a distributive approach.

Distribution Phase

In this phase the query is distributed to every node in thevort A tree rooted at the base-station is used for
data routing, also called the routing tree. Irrelevant dmtiiscarded and only relevant data is combined into a
more compact form, i.e., communication cost is reduced inapgoach as compared to collecting raw sensor
data. The processing continues until the result is finalippoted and routed back toward the user. Consider
the following illustrative example, shown in Figure 1, where ttount of nodes in the network is required.
The count query is first flooded to every node in the networkistpat the base-station. Each leaf node in the
tree reports “1” to its parent. Parents sum counts of theldidn, add “1”, and then reports the result to their
parents, and so on. The count, hence, propagates up thegdwe and reaches the root.

Base-station

Figure 1. A simple in-network aggregation scenario

Collection Phase

In the collection phase the time to evaluate the query, dectah epoch, is subdivided. Parents collect data
from children at specific time intervals. These intervals jaroperly selected to allow collection, combining
of partial results, and propagation up the network. Evdhtile required aggregate arrives at the root. It is
also worth mentioning that similar approach is used for egates with grouping. Here, partial aggregates are
combined with group id(s) in order to distinguish differenvgps.

4.3 Routing

Two legitimate questions that arise during query procgsare how the routing tree is built and how sensitive
this in-network aggregation technique is to node and comcation failures. We will defer the answer to the
second question till we discuss the performance of the twaoogghbes. The answer to the first question,
however, is what distinguishes the two approaches from edwdr.oThe TAG approach can use any routing
algorithm that provide two functionalities: (1) ability tieliver query requests to every node, and (2) ability to
provide one or more routes from every node to the root. Iniqa4er, it uses a tree-based routing where one



node is the root. The root periodically broadcasts messaglésg sensors to form a routing tree. The message
contains the root id and level. When sensors hear the metisagassign their own level to the message level
+ 1, and assign their own parent to be the sender of the mesSagsors then rebroadcast the routing message
with their own ids and levels. Children select another parergnybarent fails. When specific nodes wishes to
send a message to the root it broadcasts the message toeits, ard so on. Zhaet al., on the other hand,
propose a routing (propagation) technique, called “DigeffuBion”. This routing techniquémplicitly builds

a routing tree and propagates partial results up this tmeartts the root to compute the aggregate query. The
routing technique does not assume any base-station or sppuoified hierarchy, rather, it implicitly construct

a “digest tree” based on computing either a “min” or a “maxfesgate as follows. Consider the max query,
each node sets its perceived maximum valug to its own value, the source of the maximupo 7, the hop
distanceh; to 0, and periodically sendsn;, s;, h;) to its neighbors. When nodeeceives a message from its
neighborj with m; > m;, it setsm; tom;, s; t0 s, h; to h; + 1, and its parenp; to j. Nodei may switch its
parent tok if node k provides the same maximum value BBytis less tharh;. Gradually all nodes agree on a
nodes to be the source of the maximum with value equals the reading ©his technique converges in time
proportional to the network diameter. Other aggregateb sscaverage, sum, and count, are computed using
this tree, i.e., the tree must exist or be built first using maxraggregate. The digest tree also adapts to root
failure since any node switches to another parent when its\pacele fails, also, parents keep response timers
for their children, similar to TAG.

4.4 Performance

The authors compare their approaches with a fully centicleggproach that has one access point (base-
station). Despite the fact that this is neither a fair nor avowing comparison, we include their performance
evaluation for completeness of discussion. As expecte@ dramatically decreases communication and yields
an order of magnitude reduction in communication cost caeb#o a centralized approach. The same result
was reported by Zhaet al. for their approach. Another contribution of Zhao's perfamae evaluation, how-
ever, is quantifying the impact of packet loss in sensor ngte experimentally. We have already discussed
these evaluations in details in Section 2. In general, theywed that heavy packet loss and link asymmetry can
be quite common in sensor networks. Also, that this high tass and asymmetry can affect the routing tree
construction, and in turn, produce significant errors arglllatons in aggregate computation. They showed
that different aggregates have different robustness ctaistics. For example, min/max queries are the most
robust, while count and sum aggregates are sensitive toiluss they rely on partial results from every sensor.
The robustness of the average query depends on the digiriboftthe data, i.e., large uniformly distributed
data is more robust compared to skewed distributions. Thaeggsed a low-level networking solution to this
loss problem which is based on link quality profiling. In cast; Madderet al. use various techniques, in
TAG, in order to improve tolerance to loss and to optimize ¢bexmunication cost such as: (1) caching the
last readings of children, (2) snooping by utilizing the rgltaradio channels, and (3) guessing, i.e., providing
a guess for min/max aggregate so that sensors do not havaddtsgr own values if they do not contribute
to the guessed restilt They generally benefit from the tight integration of querggessing with routing in
in-network aggregation. Realistic evaluations of the dagiproach of TAG, i.e., in the existence of failures,
etc., and without the use of any loss tolerance techniquesjeshthat TAG is not tolerant to loss. The tolerance
improved “slightly” for some of the above mentioned recgvierchniques.

4.5 Discussion and Open Problems

In-network aggregation is suitable for specific applicasi@uch as monitoring in harsh environments where
only summaries or aggregates are required rather thanwheeasor data. However, in-network aggregation
cannot easily or efficiently be generalized to other appbos with ad-hoc queries or complex queries, or those

“The use of guessing bears similarities with PREMON [9].
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that require many different aggregate to be computed simetiusly. Nevertheless, history of sensor readings
is very useful in many applications where off-line data mintechniques can be applied. Unfortunately, no
history of data can be obtained using an in-network prongsaspproach. The overhead of building and main-
taining the routing tree should not also be ignored. MoreaVere is a considerable waiting-time overhead,
in this in-network technique, till answers become availablehe end users. This is due to the hierarchical
fashion in which the queries are evaluated. This time ovetiseales linearly with the network diameter. All
these limitations make in-network aggregation impratticanany applications. The major drawback of the
two approaches for in-network aggregation, discussedelievtheir attempt to compare their techniques to
fully centralized approaches in order to show their supiyioTherefore, more experimental studies need to be
performed to fully understand the merits and limitationsnehetwork processing. It is worth mentioning that
the functionality and performance aspects of TAG have betended recently in [14], where data acquisition
issues and their impact on query optimization and executiene discussed. Also, in [10], where sophisticated
gueries were introduced for the purpose of topographic nmgppvavelet-based compression, and tracking.

Node failures and packet loss are very common in sensor netwéggregate computation is, in general,
sensitive to loss. This motivates the need for designingegpurpose data cleaning tools for sensor data
streams. These tools should not be suitable for data aggregmly, rather, it should be generic and scalable
in the number of sensors. This task is very challenging gitiemeed for an online tool and due to the severe
limitations of sensor networks.

5 Architectures for Sensor Streams

So far we focused on wireless sensor networks that are basicsdd for monitoring harsh environments.
The posed queries in such deployments were about summarcetailed sets of sensor data. Furthermore,
the major objective was to provide “primitive” mechanismos §athering sensor data that are energy-efficient.
In order to achieve this objective, all approaches, dismissbove, were generally application-specific and,
clearly, cannot be changed on the fly to suit ad-hoc querieshi$ section, on the hand, we discuss research
on modeling sensor streams and defining abstractions tesepr sensor networks as databases [2, 15, 21]. We
also discuss the recent work of Maddetnal. on designing generic architectures for queries over stream
sensor data [11]. The research discussed in this section atiwonstructing sophisticated systems for sensor
networks that are not application-specific. These systamable three types of queries on sensor streams:
historical queries, snapshot queries, and long-runniregies. Historical queries are defined as aggregates over
historical data while snapshot queries specify values o$@edata at a given time instance. Long-running
gueries are those queries that run continuously over titegvial [2].

Traditional database management systems are based opuilatechniques and an off-line execution of
gueries. In contrast, sensor data streams consist of neaffmiv of periodic sensor samples that are “pushed”
continuously to the database. Furthermore, queries oroseasa have a real-time nature, i.e., they become
useless if their deadlines are missed. Due to this real-tiater@ and the continuous flow of sensor data, a
near real-time processing of such queries is essentiakeldre, traditional database management systems are
not suitable for sensor streams and stream managementnsyate needed instead [11]. However, traditional
streaming systems, e.g., Aurora [3], do not take the resoungsti@ints of sensor networks into consideration
during query processing. Hence, traditional streamindgesys are also inapplicable to sensor streams, and
we conclude that handling of sensor streams requires spatcgming systems that adapt to the resource
limitation of sensor networks. Maddesh al. argue that existing traditional database managementragste
handle either streaming data (push-based) or static dathbgsed) but not both. Hence, they propose an
architecture for managing multiple queries over streansenfors and traditional data sources. In other words,
a hybrid approach that allows queries that combine streamirstp-based sensors with traditional pull-based
data sources. Their architecture aims at optimizing theofisensor resources while maintaining high query
throughput. In parallel to this work, the objective of Gesdteal., in Cougar, is to define abstractions that
enable representing sensor networks as databases. Spcifiey model each sensor type as an abstract data
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type (ADT). They also define semantics for sensor databaseseveheh long-running query is modeled as a
persistent view. This view is maintained during the givenetiinterval of that query. In their work, stored data

are represented as relations while sensor data are remdsEntsequences (time series) [2, 15]. In general,
the two research directions are considered complemerdasdh other. In this section, however, we focus on
Fjord, the architecture proposed by Maddital. since it is more relevant to our discussion in this survey. We
will only highlight some recent relevant contributions oft@lee et al. later in this section.

5.1 Fjording Sensor Streams: An Overview

The architecture consists of two major components: Fjordssamsor proxies. Figure 2 illustrates this basic
architecture. Users issue queries using sensor cataloge tpuery processor. The query processor processes
the query, instantiates operator(s), and looks up corretipg sensor proxy (the specific functionality of the
proxy will be discussed shortly). The proxy that controlevehnt sensors, instructs them to relay their readings.
The sensors relay their readings to the proxy either as rgnoaessed signals, e.g., aggregate. The proxy packs
these samples as tuples and forwards them to the query parca@$ie processor processes the query using the
provided data and, finally, output the answer to the end users.

—

\é/ / User Terminal
\@gx

- — Query Processor

Figure 2. The Overall Architecture of Fjord

Fjord

Fjords, Frameworks in Java for Operators on Remote Datanssreare generalized query plans for sensor
streams. They provide non-blocking (passive) and windowedlatprs that allow queries over both streaming
push-based sensors and traditional pull-based data souincether words, they integrate streaming sensor data
(push-based) with disk-resident data that are pulled bytioadl operators (pull-based). Pull-based blocking
operators are not suitable for sensor streaming for sexggiabns. First, sensors cannot keep their receivers on
at all times listening to requests for samples due to theibuece limitations. Second, sensor networks suffer
several problems that make sensor data highly liable tmdstend loss. Finally, sensor streams are never
ending, and hence, operators on the stream cannot be ldoekin, sort and some join algorithms cannot be
used. Therefore, operators in Fjord do not pull data fronsgento process, rather, they operate on the sampled
pushed data from the sensors.

Fjord provides the functionality and interface necessarintegrate streaming sensor flow into query plans.
Specifically, similar to traditional database systemsrd-jconsists of operators that export an iterator-like
interface and are connected together via pipes or queugsHjped = operators + queues). Each operator has
a set of input queues and a set of output queues. It readstinpha the input queues in any order and output
tuples to some or all of the output queues. Queues are rabjofe routing data from one operator to another.
They can either be push or pull queues. Each operator in they gvaluation plan represents a state in a
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transition diagram (state machine). Given the currenestati some set of inputs, the operator either moves to
a new state or remains in the same state and possibly prodweg®f tuples as output. This design reduces the
total number of threads in the system since all state maapeeators can run in a single thread. Unlike other
traditional database systems, operators in Fjord do nokbfalata is not available, rather, they just move back
to the same state, without forcing them to output any tuple®lly, it is worth mentioning that Fjords provide
support for combining multiple queries into a single evlraplan. l.e., they allow processing from multiple
gueries to share the same data stream and be in a single Hjbeay. also support handling operations with
multiple inputs and outputs. Experimental evaluationsjofd-showed that this approach is indeed scalable in
the number of simultaneous queries. It also revealed thmbgung related queries into a single Fjord increases
the query throughput.

Power sensitive sensor-proxy

The proxy serves as a mediator between the physical sensbth@muery processing environment. It uses
control messages to switch the sensors on and off and to aldgiissampling rate at any time. This would result
in considerable energy savings if users are not interestgdeérying some specific sensors or even all sensors
for long periods of time. Proxies can also control the pretescommunication tradeoff by instructing their
associated sensors to perform simple aggregation on thelesibrefore transmitting the data. This functionality
reduces the load of query processing at the Fjord(s) as well.

5.2 Discussion and Open Problems

The Fjord approach is geared toward sensors with limiteduress. Fjord, however, is a centralized archi-
tecture and lacks support for advanced query processimgitpees. It also lacks optimization tools e.g., that
combines common subparts of user queries in order to inemgaasry throughput [11]. In contrast, the early
work of Gehrkeet al. on the Cougar system was geared toward more powerful sef&Eesntly, they extended
their work and considered the former class of sensors, irsose with more limited resources. Specifically,
they adopted an in-network distributed processing appra#o their original Cougar system in order to best
utilize sensor resources and introduced novel optiminatghniques that suits this class of sensors. Whenever
a query is defined, a query optimizer generates an efficistritolited query plan for in-network processing that
aims at reducing the resources usage. The catalog infeimatid the query specification are utilized in order
to determine the best plan. The generated plan defines tioe str@s for executing the defined query such as
data flow between sensors, specific computation plan, etc (21¢ important note here is that both Fjord and
Cougar have emphasized the importance of proxies as climgrcobmponents.

There are numerous open problems and research directisengor streaming systems such as the ones
discussed in this section. Some of these problems were gigetl by Gehrkest al. in [21]. For example,
they highlighted the need to overcome limitations of inwark processing, especially synchronization. Such
limitations arise from delays and high loss rate in senstwowks as we discussed above in Section 2. Specif-
ically, the design and implementation of adaptive systdimt, accommodate sensor delays and/or failure, is
an exciting research directiainMoreover, the functionality of the currently used querydaages needs to be
extended. These languages were not designed for resoursiainad data sources such as sensor devices. As
we also discussed earlier in this paper, a good query planrmosstreams is not necessarily the one that only
minimizes energy or execution time. In particular, new aostrics need to be defined that tradeoff various
factors. Nevertheless, catalog management related pnshieed to be solved. Exact and complete meta-
data about sensors, e.g., their position, workload, etc.,rt toaobtain, store centrally, or updated frequently
enough. Therefore, new techniques that utilizes only glarietadata are needed.

5This functionality is not yet provided neither by Fjord noo@ar.
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6 Erroneous Sensor Data

In this section we give an overview of our ongoing work on hamginoisy sensor data [5]. We briefly
discussed, in Section 2, that sensor data is expected todvedise. The degree of imprecision varies depending
on several factors such as sensor cost, environmentaksfietc. Sensor data is basically originating from
“actual measurements” of some physical phenomenon andchsare subject to several sources of errors. For
example, noise from external sources, inaccuracies in gasarement technique, etc. Examples from real-life
include, but are not limited to, sensors that record digtane a fixed point by using signal strength. In this case,
the estimated ranges can vary widely as signal strength valiuine sensor are subject to external conditions.
Weights of trucks is another example. They can be measuratkbys of strain gauges attached to bridges, and
therefore, can be affected by other vibrations and calimadrift. Also, the accuracy of temperature sensors
depends on their cost, and hence, imprecision in temperdata is highly expected.

The cost of imprecision can be significant if they result inramediate decision or actuator activation. We
believe that sensors will be ubiquitous in the near futurel, \&itl become a major source of information for
real-time decision making. This motivated our recent warkhandling erroneous sensors. This problem does
not generally arise in traditional databases where the smfrdata is either an explicit data entry operation or
a transaction activity. The origin of data in this case iddgjly business, financial or personnel. The database
management systems usually assume clean data with no emdrepisy data, if any, is assumed to be cleaned
by an off-line and independent operation prior to storagelath and evaluations of queries. Such off-line
operations, however, are usually tedious, lengthy, andnreguman expertise [16]. Clearly this scenario is not
suitable for any data stream. Therefore, in the rest of #isien we highlight our recent research on “online”
cleaning of noisy sensor streams.

6.1 Online Cleaning: An Overview

The major objective of our current research is to obtain eteuuncertainty models of the true unknown
sensor readings in an online fashion. We explicitly incoap® an error model for each of the noisy data
sources (sensors). We use the observed noisy readings jinctan with these error models to provide
accurate uncertainty models of the unknown true sensormgadinline. The resultant uncertainty models
could then be used to estimate real-time queries on sentarfae uncertainty model can be computed either
at the sensor level or at the database server when sensormrdeta.aHowever, models derived at the sensor
level may have to simpler than those derived at the powerfilbdse server. This is due to obvious processing
limitations of sensors, discussed before. Specifically, sgaiBayesian-based estimation approach to model
uncertainty in sensor data due to random errors. We stattbtajrong an explicit Gaussian error model for each
of the data sources. As sensor data flows, we incorporate #léhblod of obtaining the observed values with
prior knowledge of the distribution of the true values andysgmuently, we obtain posterior uncertainty models
of the unknown true values, i.e., a probability density functid the true unknown value. Different models
are obtained at each time instance based on the prior knogvladd the observed values. Our approach is
applicable to situations when relatively tight prior knowgedcan be obtained. We believe that this is a realistic
approach since sensor measurements are usually about aadalled physical phenomena, and hence, a prior
knowledge can easily be obtained.

We argue that models of errors associated with measuredrsgatsohave to be part of any data model in
sensor databases. Also, #stimate operator, that provides a probability distribution of the measurtdtaute,
should be a fundamental operation in sensor databasese Besh of our knowledge there is no other research
that focuses on modeling errors in noisy sensor data and owirdg accurate uncertainty models of such
imprecise erroneous sensors. Existing work has assumeexistence of Gaussian uncertainty models of
sensor readings (Gaussian pdf). Such models, however, aeecurate since they do not benefit from prior
knowledge of the data distribution. The focus of the authonsthe other hand, is to introduce techniques for
storing these models as abstract data types (ADTs) and oriivgdand retrieving them [6]. Others assumed
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uncertainty in sensor databases due to lag of updates,quoersty, the data in the database is only an estimate
of the actual state. However, this work does not deal with @was data and it is not clear how uncertainty due
to noise can be incorporated in the current model [4].

In presence of noisy data, queries can only provide an efgiofdts true value. We are currently working
on several algorithms to evaluate a wide range of queriegjumin proposed Bayesian uncertainty model. In
general, we are investigating algorithms that are not tied specific model of uncertainty, and hence, can
easily be generalized to other models of uncertainty. Weadiavaluating real-time queries approximately and
providing guaranteed error bounds.

6.2 Open Problem

There are several interesting research paths and opereprslvklated to data cleaning in sensor streams.
Simply, which data cleaning tasks are necessary/relevasgrsor streams? Irrespective of sensor limitations,
can they be performed in one pass? If so, can they be adapteédff approximated to suit limitations of sensor
streams? For example, in addition to noise, we believe thasing values are, and will continue to be, a
major data cleaning task in sensor streams. Missing valeessp even when low-level networking recovery
techniques are used [22, 12]. This problem looks even taughsolve (online) than imprecision due to noise.
Missing values may not seem to be an important problem if fewhem are expected. However, a more
interesting problem is to be able to sample the sensor fiel@fosamples from few sensors and then reconstruct
the entire data approximately. This scenario provides nmarargy/processing savings. Therefore, we are
currently extending our research on data cleaning to irectbi problem. There are also several open problems
related to query evaluation over multidimensional immediata. Specifically, estimation of multidimensional
gueries over noisy data. How can we evaluate queries in teis?c&Vhich attribute(s) to pick first in order to
obtain better confidence? Can we gather additional data ier dodimprove our confidence? Which data to
gather? etc. Finally, another direction is deriving costriog for the effect of query estimation on decision
making and actuation, e.g., the cost of false positive andieefnegative.

7 Conclusions

We have emphasized several problems and limitations of @gsesensor networks and sensor data stream-
ing. We have also discussed several research directiomngosstreams and highlighted major open problems
in these directions. In particular, we surveyed currentaiegein storage and gathering of sensor data, architec-
tures for querying sensor streams, and data cleaning. Seetsoorks have certain limitations that make sensor
streaming, in general, a challenging task, different froaditional databases and traditional streaming. These
limitations should explicitly be addressed during acdigsi storage and querying of sensor data. In general,
local processing techniques should be favored wheneveibp@sSensor data also have certain characteristics
that do not usually exist in traditional data such as itsieg@mporal characteristics. These characteristics can
be utilized in order to optimize the usage of sensor resguacel overcome some limitations of sensor net-
works/data. However, experimentations and charactevizatis still needed in order to fully understand such
characteristics.

We have already listed several challenges in sensor strdaomsgghout this paper. For example, the study
of spatio-temporal correlation characteristics, espigcilynamic correlation. Also, imprecision due to noise,
missing values, massiveness of data, etc., and deriving péwwiaation metrics in query evaluation. Our
ultimate goal is efficient systems that address all thes#ectgges. In the near future, sensors will become
very pervasive. They will be embedded in the physical spacwst everywhere, collecting overwhelming
streams of data. They will behave similar to web-pages or agsygting and/or offering services. A decision
making infrastructure will be built on top of these sensorsisTinfrastructure will enable extraction of any
needed information, directly from sensors, on demand, an@al-time. The future of sensor research lies
in designing mechanisms that allow this scenario. Spetiifiamechanisms for integrating data from huge
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number of multiple sources, possibly of different chargsties (sensor type, etc.), cleaning this data, posting
it in appropriate forms, and providing answers to millionsiiultaneous users’ queries in real-time!!
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